
Multi-level Weight Backwards Pre-analysis and Elexible QP Mapping based Intra-frame Rate-distortion optimization for Screen Content Coding

趙子彦 池永研究室

Problem

Unique features need targeted quality optimization

Solution

Pre-analyze block importance and flexibly optimize quality

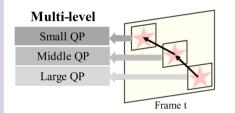
1 Multi-level block reference

② Large CU independency

③ Quality loss in edge block

Proposal 1: Multi-level analyze

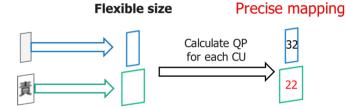
Proposal 2: Flexible quality adjust

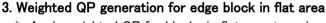

Proposal 3: Use weighted quality

Need targeted quality optimization

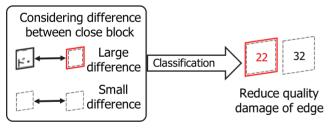
Proposals

1. Multi-level intra-frame backwards pre-analysis


> Different level reference blocks are assigned with different quality



Backwards finding reference block intra frame


2: Flexible CU-level QP mapping

> Block quality is adjust in CU-level and not influence each other

> Apply weighted QP for blocks in flat area to reduce quality damage

Basic framework:

During

:Similar block Reference block Multi-level QP for reference block Edge block Weighted OP for edge block Ţ Small OP Large OP - L CU-level OP compression mapping edge block flat blocks

Experiment result

		P1		P1+P2		P1+P2+P3	
	Sequence	BD-rate	Coding time	BD-rate	Coding time	BD-rate	Coding time
Typical Screen Content	Console	-0.39%	+7.20%	-0.858%	+6.94%	-1.122%	+5.98%
	Desktop	-0.321%	+5.30%	-0.612%	+5.71%	-0.812%	+5.88%
	Programming	-0.37%	+4.30%	-0.584%	+6.02%	-0.811%	+6.10%
	wordEditing	-0.28%	+4.80%	-0.552%	+4.78%	-0.582%	+5.92%
	web_browsing	-0.29%	+6.90%	-0.578%	+5.12%	-0.661%	+5.43%
	SlideShow	-0.22%	+4.40%	-0.553%	+3.85%	-0.697%	+4.78%
	flyingGraphics	-0.31%	+4.30%	-0.537%	+3.27%	-0.744%	+3.84%
Mixed content	Basketball_screen	-0.37%	+4.93%	-0.526%	+5.33%	-0.584%	+5.40%
	MissionControlClip3	-0.32%	+5.20%	-0.529%	+5.48%	-0.598%	+5.53%
	MissionControlClip2	-0.35%	+4.60%	-0.518%	+4.23%	-0.554%	+4.56%
Natural- like content	map	-0.25%	+5.30%	-0.296%	+6.03%	-0.455%	+5.48%
	robot	-0.24%	+1.20%	-0.386%	+2.02%	-0.387%	+2.20%
Average		-0.314%	+4.87%	-0.550%	+4.90%	-0.670%	+5.09%

Conclusion

Proposed methods achieve 0.67% BD-rate reduction compared with VVC standard test Model with only 5% coding time increasing.

This work explores the potentiality of ratedistortion optimization for SCC, and will make contribution to new generation SCC standard.

